Michael Komm a výzkum tokamaků

Michael Komm je vedoucí oddělení fyziky vysokoteplotního plazmatu na Ústavu fyziky plazmatu Akademie věd ČR v Praze. Zabývá se výzkumem jaderné fúze – konkrétně tím, jak ochránit první stěnu budoucích termojaderných reaktorů před extrémními tepelnými toky z horkého plazmatu. Kromě experimentů na tokamacích se zabývá i modelováním interakce plazmatu s komponentami první stěny. K tomu využívá služby řady superpočítačů, včetně IT4Innovations (IT4I).

Vzpomínáte si, kdy jste se poprvé setkal se superpočítačem?

První a jediný superpočítač, který jsem kdy navštívil bylo právě IT4I v Ostravě při příležitosti jeho uvedení do provozu. Budova a vybavení superpočítačového sálu ve mne zanechaly velmi pozitivní dojem. Prohlídka sálu v atmosféře se sníženým obsahem kyslíku byl i trochu adrenalin. :)

Které superpočítače v IT4Innovations jste využil?

Na IT4I počítám již léta, využil jsem stroje Anselm, Salomon a Karolina. V zahraničí počítám na evropském superpočítači Marconi (Cineca, Itálie) a pak na japonském JFRS. 

Který superpočítač IT4Innovations v současnosti pro svůj výzkum využíváte a jaký význam má pro vaši práci?

V současné době využívám stroj Karolina pro particle-in-cell simulace interakce fúzního plazmatu se stěnou. Snažím se charakterizovat vliv srážek mezi částicemi plazmatu na dopadající tepelné a částicové toky a na termionický proud elektronů, který mohou do plazmatu vysílat wolframové komponenty pokud se zahřejí na teplotu blízkou bodu tavení. Tento scénář může v budoucnu nastat například na tokamaku ITER, pokud by tepelné toky na jeho wolframové desky překročily nominální míru. Je důležité zkoumat, co by se v takovém případě dělo a jaké by to mělo důsledky pro životnost desek i kvalitu plazmového výboje.

Můžete se podělit o úspěch, na který jste obzvláště hrdý?

Minulý rok se mi ve spolupráci s kolegy z několika evropských fúzních laboratoří podařilo na německém tokamaku ASDEX Upgrade experimentálně dokázat, že tepelné toky pocházející z okrajových nestabilit plazmatu (tzv. ELMů) se dají významně snížit za pomocí vstřikování argonu do plazmatu. Tento postup byl v komunitě dlouho považován za neschůdný díky předpovědím numerického modelování. Nicméně ve fyzice plazmatu pořád platí, že experiment je o krok napřed před modelováním :) 

Před několika lety se mi s kolegy a kolegyněmi ze Švédska podařilo rozšířit prediktivní model termionického proudu unikajícího z horké stěny (například wolframové) pro plazmata s magnetickým polem. K tomu bylo potřeba provést sérii náročných simulací z nichž velká část se počítala právě na IT4I. Chtěl bych tímto IT4Innovations poděkovat za dlouhodobé poskytování výpočetních prostředků!


Štěpán Sklenák a výzkum zeolitů
  
RNDr. Štěpán Sklenák, Ph.D., DSc.  je vedoucím vědeckým pracovníkem Ústavu fyzikální chemie J. Heyrovského Akademie věd České republiky od roku 2004. Po získání titulu Ph.D. v roce 1995 strávil téměř deset let na Technion-Izraelském technologickém institutu, Yale University, University of California a Michigan State University. V roce 2023 obdržel titul doktor chemických věd (DSc.) od Akademie věd České republiky.
Jeho současný výzkum se zaměřuje na kvantově-chemické výpočty zeolitů s cílem modelovat jejich strukturu, reaktivitu, katalytickou aktivitu a vlastnosti.
V roce 2020 obdržel nejprestižnější české vědecké ocenění – Cenu společnosti Česká hlava PROJEKT, cenu Invence spolu s Dr. Jiřím Dědečkem a Dr. Edytou Tábor za vytvoření a popis struktury a reaktivity nových, unikátních typů reakčních kationtových center s přechodnými kovy v zeolitové matrici a jejich použití při oxidaci metanu na methanol.

Vzpomínáte si, kdy jste se poprvé setkal se superpočítačem?

Používat jsem začal až superpočítače v IT4Innovations v Ostravě, nicméně v roce 1999 jsem viděl vystavený vyřazený CRAY superpočítač na konferenci v Boulder, CO v USA, zřejmě (už je to 25 let) to bylo v této instituci, společně s výstavou o zakladateli firmy Cray panu Seymour Cray.

Které superpočítače v IT4Innovations jste využil?

Anselm, Salomon, Karolina a LUMI.

Který superpočítač IT4Innovations v současnosti pro svůj výzkum využíváte a jaký význam má pro vaši práci?

Momentálně používám Karolinu a LUMI k výpočtům realistických modelů zeolitů. Využití superpočítače v porovnání s pracovní stanicí  (t.j. serverem) umožní výpočty zeolitů s větší jednotkovou celou a dále i použití komplexnějších výpočetních modelů a výpočetně náročnějších postupů výpočtů. Výpočty s realistickými výpočetními modely umožní odhadnou realistické hodnoty reakční energie a rychlosti chemických reakcí katalyzované zeolity, adsorpční energie molekul na zeolitech, NMR a vibrační spektra zeolitů a adsorbovaných molekul na zeolitech.

Můžete se podělit o úspěch, na který jste obzvláště hrdý?

Cena společnosti Česká hlava PROJEKT, cena Invence spolu s Dr. Jiřím Dědečkem a Dr. Edytou Tábor.
Důležité je zdůraznit, že celá idea štěpení molekulárního kyslíku (tj. O2) vznikla při mém výpočetním modelování a teprve následně byla potvrzena experimenty.


Jiří Klimeš a molekulární krystaly

Jiří Klimeš pracuje na Matematicko-fyzikální fakultě Univerzity Karlovy, kde vede menší výzkumnou skupinu na Katedře chemické fyziky a optiky. Zabývají se vývojem přesných výpočetních metod pro výpočty vlastností materiálů a jejich použitím. V současnosti se hlavně věnují molekulárním krystalům, což jsou například některá léčiva nebo krystaly jednodušších molekul jako je voda nebo oxid uhličitý.

Vzpomínáte si, kdy jste se poprvé setkal se superpočítačem?

První zkušenosti s výpočty na vzdálených počítačích jsem získal během studií, během nichž jsem využíval služby Metacentra. To umožňuje využívat stroje různých institucí v České republice, v té době to byly servery s desítkami procesorů. Prvním superpočítačem, na kterém jsem pracoval, byl HECToR ve Velké Británii. Ten měl procesorů přes deset tisíc a v roce 2007 byl sedmnáctý nejvýkonější na světě. V té době jsme studovali chování vody na povrchu soli a potřebovali jsme provádět velké množství náročných výpočtů. Přístup k superpočítači nám práci velmi zefektivnil a umožnil nám pochopit základní principy, kterými se chování vody a soli řídí.

Které superpočítače v IT4Innovations jste využil?

Na strojích v IT4Innovations (IT4I) pracuji téměř od jejich začátku, první žádost o výpočetní čas jsem podával v roce 2015, kdy byl spuštěn superpočítač Salomon. Byla to vlastně první příležitost žádat o výpočetní čas po mém návratu ze zahraničí. Rád jsem ji využil, neboť velká část našeho výzkumu potřebuje náročné výpočty a bez existence IT4I by byla situace pro mne po návratu o mnoho složitější. Od té doby využíváme v podstatě vše, co je v IT4I dostupné.

Který superpočítač IT4Innovations v současnosti pro svůj výzkum využíváte a jaký význam má pro vaši práci?

Naše výpočty se dají rozdělit do dvou typů, jedny jsou velmi náročné na paměť počítače a druhé jsou méně náročné, ale zase jich je větší množství. Pomocí obou typů se snažíme hlavně pochopit přesnost simulací pro popis síly vazeb mezi molekulami. Výpočty náročné na paměť provádíme hlavně na Karolině, přičemž využíváme najednou až desítky jednotlivých serverů, ze kterých se Karolina skládá. To nám umožňuje využívat přes 10 TB výpočetní paměti, tedy asi tisíckrát více než je v běžných počítačích. Hojně využíváme také Barboru, jelikož jsme pro její procesory optimalizovali jeden z našich výpočetních programů.

Můžete se podělit o úspěch, na který jste obzvláště hrdý?

Zmínil bych článek, který jsme v loňském roce publikovali s mým postdokem a ve kterém jsme analyzovali jeden typ chyb našich výpočtů. Při výpočtu vazeb mezi molekulami často zanedbáme elektrony, které se nacházejí blízko atomových jader, nebo jejich popis zjednodušíme. To nám umožní řádově zrychlit naše výpočty, ale způsobí jisté chyby vypočtených hodnot. Při výpočtech jsme buď museli tyto chyby akceptovat, nebo použít přesnější a výpočetně náročnější popis oněch elektronů. V našem článku jsme se podívali na to, jak chyba vzniká a vyvinuli způsob, jak ji podstatně snížit. I když se jedná o velmi "technické" téma, považuji je za důležité, neboť snad přispěje ke zvýšení spolehlivosti dat, která jsou publikována v literatuře.


Martin Friák a vývoj nových materiálů

Martin Friák pracuje jako vedoucí skupiny v Ústavu fyziky materiálů Akademie věd České republiky v Brně. Na Masarykově univerzitě vystudoval fyziku pevných látek, a to jak magisterské, tak PhD studium. Hned po doktorátu odjel do zahraničí a 11 let působil ve dvou ústavech společnosti Maxe Plancka v Německu. Od roku 2013 pracuje zase v Brně. Je teoretik, věnuje se výpočetní materiálové vědě a teorií vedenému vývoji nových materiálů. Učí na Masarykově univerzitě i Vysokém učení technickém v Brně. V posledních letech tým rozšiřuje výpočty z klasických (super)počítačů i na počítače kvantové. 

Vzpomínáte si, kdy a jak jste se poprvé setkal se superpočítačem?

Poprvé jsem měl tu úžasnou možnost být přímo „na sále“ superpočítače již před několika lety a to právě díky IT4Innovations – jako účastník pravidelné podzimní konference uživatelů IT4Innovations. Bylo vynikající zažít to, co většinou známe jen z hollywoodských „trháků“ (v posledních letech to byl třeba nezapomenutelný Marťan, kde je poněkud nadsazená scéna přímo ze superpočítačového sálu).

Které superpočítače v IT4Innovations jste využil?

V naší práci nám nesmírně pomáhá hlavně Karolina a Barbora, ale jak jsme věrnými a spokojenými uživateli IT4Innovations již celá dlouhá léta, počítali jsme i na Anselmovi a Salomonovi, když byly tyto stroje ještě v provozu.

Který superpočítač IT4Innovations v současnosti pro svůj výzkum využíváte a jaký význam má pro vaši práci?

V rámci jednoho z projektů podporovaných Grantovou agenturou ČR počítáme nanočástice pro lékařské aplikace (léčbu nádorových onemocnění pomocí hypertermie) a to konkrétně na Barboře. Karolina nám zase pomáhá se simulacemi běhu kvantových počítačů v rámci spolupráce s Massachusettským technologickým institutem (MIT) z USA.

Můžete se podělit o úspěch, na který jste obzvláště hrdý?

Pro můj výzkum jsem pro období 2024–2029 získal celkem 30 milionů korun v rámci tzv. Akademické prémie, jako nejvyššího ocenění, které Akademie věd uděluje. Už se moc těším na rozvoj hybridní materiálové výpočetní vědy (kombinující klasické a kvantové počítače s nástroji umělé inteligence) a její využití při vývoji nových materiálů.

 

 


Jakub Šístek a matematické algoritmy pro vysoce výkonné výpočty

Jakub Šístek se zabývá matematickými algoritmy pro vysoce výkonné výpočty, jako jsou paralelní řešiče pro numerickou lineární algebru, škálovatelné metody doménové dekompozice a aplikace na problémy strukturální mechaniky a výpočetní dynamiku tekutin. Rovněž se zajímá o identifikaci a vizualizaci vírů v proudících tekutinách. V současné době je vedoucím Oddělení konstruktivních metod matematické analýzy na Matematickém ústavu Akademie věd České republiky a odborným asistentem na Katedře aplikované matematiky Fakulty informačních technologií Českého vysokého učení technického v Praze. Dříve pracoval na univerzitách v Denveru, Cambridge a Manchesteru. Doktorát z oboru Matematické a fyzikální inženýrství získal na Fakultě strojní Českého vysokého učení technického v roce 2008. Je nositelem Ceny Iva Babušky (2009) a Prémie Otto Wichterleho (2013).

Vzpomínáte si, kdy jste se poprvé setkal se superpočítačem?

Poprvé jsem použil superpočítač v roce 2005, a to během pobytu v Edinburgh Parallel Computing Centre (EPCC) v rámci projektu HPC Europa. Tento superpočítač se jmenoval HPCx a byl to IBM eServer p5. Byl však umístěn v Daresbury Laboratory, takže nemohu říci, že jsem ho viděl na vlastní oči. Během pobytu v Denveru v roce 2007 jsem začal používat superpočítač Frost, systém IBM BlueGene, v NCAR v Boulderu. První superpočítač, který jsem skutečně viděl na vlastní oči, byl Pleiades v NASA Ames Research Center, který byl čtvrtým nejrychlejším superpočítačem na světě v roce 2009.

Které superpočítače v IT4Innovations jste využil?

Superpočítače IT4I využívám téměř nepřetržitě od samého počátku centra. První schválenou projektovou žádost jsem podal v první grantové soutěži IT4I. Na superpočítači Anselm jsem spouštěl srovnávací testy našich kódů a spustil některé z našich simulací. Na Salomonu jsem realizoval mnoho rozsáhlých výpočtů a společně s kolegy nyní intenzivně využíváme Karolinu pro náš výzkum. Nedávno jsme do našeho hlavního softwaru, knihovny řešičů BDDCML, přidali podporu GPU a kromě toho, že nyní běží na akcelerovaných uzlech Karoliny, se těšíme, že v příštích měsících spustíme naše výpočty na superpočítači LUMI.

Který superpočítač IT4Innovations v současnosti pro svůj výzkum využíváte a jaký význam má pro vaši práci?

Společně s kolegy pravidelně provádíme rozsáhlé simulace na tisících CPU. Proto jsme spokojení uživatelé Karoliny, kterou využíváme jako hlavní výpočetní zdroj. Náš výzkum se primárně zaměřuje na vývoj nových škálovatelných metod pro výpočetní mechaniku tekutin a pevných látek. Tyto metody jsou založeny na technikách doménové dekompozice a matematických algoritmech, které jsou přizpůsobené paralelnímu zpracování. Mnoho našich simulací jsou rozsáhlé testy škálovatelnosti těchto metod, zatímco druhou kategorií náročných problémů jsou časově závislé simulace proudění. Datové sady generované těmito simulacemi využíváme k hodnocení nových metod pro identifikaci vírů, což je další výzkumný směr našeho týmu.

Můžete se podělit o úspěch, na který jste obzvláště hrdý?

Jako doktorand a postdoktorand jsem měl úžasnou příležitost získat skvělé zkušenosti z univerzit v Denveru, Cambridge a Manchesteru. Během těchto pobytů jsem navázal na téma, kterým jsem se zabýval už ve své disertační práci, a prohloubil jej směrem k matematice, strojnímu inženýrství a vysoce výkonným výpočtům. Jsem rád, že většina těchto spoluprací je stále aktivní. Například nedávno jsme publikovali článek o škálovatelné metodě pro inženýrské simulace, která nevyžaduje složité generování výpočetních sítí. Na článku jsme pracovali s kolegy z University of Cambridge osm let a efektivitu metody jsme demonstrovali prostřednictvím paralelních výpočtů prováděných na superpočítačích Salomon a Karolina. Článek je dostupný jako open-access na https://doi.org/10.1016/j.cad.2024.103730


Martin Zelený a kvantově-mechanické výpočty magnetických slitin s tvarovou pamětí

Ing. Martin Zelený, Ph.D. pracuje na Ústavu materiálových věd a inženýrství (Fakulta strojního inženýrství, Vysoké učení technické v Brně) jako vedoucí Odboru strukturní a fázové analýzy. Jeho výzkumným zaměřením jsou kvantově-mechanické výpočty a simulace termodynamické stability a mechanických a magnetických vlastností progresivních materiálů. Konkrétně se zabývá magnetickými slitinami s tvarovou pamětí, které vykazují spontánní makroskopickou deformaci, jsou-li vloženy do magnetického pole. Rovněž se zabývá materiály s vysokou entropií, které díky tomu, že seskládají z velkého množství chemických prvků, mohou vykazovat neočekávané vlastnosti.

Vzpomínáte si, kdy jste se poprvé setkal se superpočítačem?

Moje první setkání se superpočítačem bylo již při vypracovávání vlastní diplomové práce na Fakultě chemické (VUT v Brně), kde jsme měli malý počítačový cluster, ale opravdový velký superpočítač, který jsem používal při vypracovávání své disertační práce, byl pod správou MetaCentra.

První prohlídku superpočítačového sálu jsem absolvoval během doktorského studia při návštěvě Forschungzentrum Jülich, kde jsem navštívil počítač Jugene.

Které superpočítače v IT4Innovations jste využil?

Postupně jsem při své práci využil všechny superpočítače kromě NVIDIA DGX-2.

Který superpočítač IT4Innovations v současnosti pro svůj výzkum využíváte a jaký význam má pro vaši práci?

Nyní využívám superpočítač Karolina a dále superpočítač LUMI ve Finsku, bez kterých není možné kvantově-mechanické výpočty provádět. K těmto výpočtům používáme program VASP (Vienna Ab initio Simulation Package), který u umožňuje výpočty elektronové struktury, meziatomových interakcí a totální energie studovaných materiálů stejně jako optimalizaci jejich krystalové struktury. Takto získaná data jsou následně využívána k predikci makroskopických vlastností těchto materiálů. 

Můžete se podělit o úspěch, na který jste obzvláště hrdý?

Jako svůj největší úspěch považuji studium magnetických slitin s tvarovou pamětí – konkrétně slitiny Ni2MnGa, kde jsem spolu s kolegy z Akademie věd ČR a finské LUT (University of Lappeenranta) jednak popsal vliv dopování na stabilitu nízkoteplotní fáze martenzitu, a také jsem zjistil nutnost používání korekcí pro zlepšení přesnosti kvantově-mechanických výpočtů pro tuto slitinu. Tento výzkum začal na mém post-doktorském pobytu ve Finsku na Aalto University a pokračuje dále při mém působení na Fakultě strojního inženýrství VUT v Brně, kde byl podpořen projektem GAČR. Velice významný pro můj profesní rozvoj byl také post-doktorský pobyt na University of Vienna, kde byl program VASP vyvinut, a mohl jsem se ho tak naučit používat přímo od jeho autorů.